

Blood Management 2016

2016 AAHKS Annual Meeting Orthopaedic Team Member Course

Harpal S. Khanuja, MD Associate Professor Chief of Adult Reconstruction Johns Hopkins University Chair, Johns Hopkins Bayview

Objective

- Managing blood loss
- Minimize postoperative anemia
- Avoiding Blood Transfusions
- Not compromising recovery or outcomes

"An ounce of prevention is worth a pound of cure."

-Benjamin Franklin

- Identifying High Risk Patients
 - Optimize medical condition

PAEDIC SURGERY

- Stopping anti-platelet / anti-coagulant medications
 - Resumption of these medications
 - Discuss with prescribing physicians

Nutritional Supplements

- Gingko biloba
- Garlic Ginseng
- Fish oils (omega-3 fatty acids)
- Dong Quai
- Feverfew
- Vitamin E

OPAEDIC SURGERY

Anesthet Sur J. 2009 Mar-Apr;29(2):150-7

• Anemia evaluation

OPAEDIC SURGERY

- Preop Hgb > 15g/dL => transfusion is rare
- Preop Hgb < 11g/dL => 100% transfusion

J Bone Joint Surg Am. 2002 Feb;84-A(2):216-20

Preoperative Anemia

 Hgb < 13 requires evaluation and work up supplementation

• Done in conjunction with Medicine

EPO and **IRON**

- Effective preoperative tools to increase Hgb
- Iron deficiency is common 35% arthroplasty patients
- IV Iron playing an increasing role
 - Further studies needed

Preoperative autologous blood JOHNS HOPKINS

May have lower allogenic transfusion rates

 Forgie et. al. meta-analysis - OR 0.17 for need for allogenic blood

Preoperative autologous blood JOHNS HOPKINS

Reported costs vary: \$489-\$507.20 for autologous \$68 greater than allogenic blood

>50% wasted and disposal costs can be ~\$175

Multimodal Approach Peri-op Johns HOPKINS

- Hypotensive anesthesia with spinals
- Tranexamic acid
- Hemostasis
- Adequate volume resuscitation with crystalloid and colloid
- No use of drains

Hypotensive Anesthesia

- Reduce intra-op blood loss, allow for more precise hemostasis
- Independent factor in transfusion reduction
- Decrease DVT rate

PAEDIC SURGERY

Dry field for visualization and implant fixation

(Juelsgaard et al. Regional Anesthesia and Pain Medicine 2001, Sculco et al. AAOS Instructional Course Lectures 2005, Sharrock et al. Anesthesia & Analgesia 1993)

Cell Salvage in Hip and Knee Arthroplasty

A Meta-Analysis of Randomized Controlled Trials

2015 meta-analysis includingCochrane plus studies to January2013

 Newer studies tended to have better study design with more restrictive transfusion thresholds and decreased use of closed suction drainage
 EDIC SURGERY

New Meta-Analysis Results

Traditional transfusion (>8 g/dl): • THA - RR 0.57 (95% CI: 0.36-0.89) • TKA - RR 0.54 (95% CI: 0.40-0.73)

Restrictive transfusion (<8 g/dl): THA - RR 0.72 (95% CI: 0.58-0.91) *TKA -* RR 0.54 (95% CI: 0.25-1.18)

Tranexamic Acid

 Inhibits degradation of fibrin through competitive binding at lysine binding site of plasminogen and plasmin

RESEARCH ARTICLE

Open Access

KINS

Tranexamic acid and the reduction of blood loss in total knee and hip arthroplasty: a meta-analysis

Rajiv Gandhi^{1*}, Heather MK Evans², Safiyyah R Mahomed³ and Nizar N Mahomed⁴

- Meta-analysis of RCTs for primary THA and TKA from 1995-July 2012
- Delivery: 29 IV, 3 intraarticular, 1 oral, and 1 topical

Results: Blood Loss in TKA

RTHOPAEDIC SURGERY

study name	Subgroup within study	Year	Stati	stics for	each stu	idy	Wtd. Diff in means and 95% CI				
			WMD	Lower limit	Upper limit	p-Value					
liippala. et al.	knees	1995	-1.496	-2.335	-0.656	0.000					
Benoni et al.	knees	1996	-1.731	-2.226	-1.235	0.000					
liippala et al.	knees	1997	-1.652	-2.170	-1.135	0.000					
lansen et al.	knees	1999	-1.493	-2.177	-0.809	0.000					
Fanaka et al.	knees	2001	-3.570	-4.239	-2.901	0.000	k				
/eien et al.	knees	2002	-1.388	-2.185	-0.591	0.001					
Good et al.	knees	2003	-0.757	-1.326	-0.188	0.009					
Orpen et al.	knees	2006	-0.203	-0.933	0.527	0.586					
Camarasa et al.	knees	2006	-1.151	-1.599	-0.703	0.000					
Aolloy et al.	knees	2007	-0.414	-0.810	-0.017	0.041					
Alvarez et al.	knees	2007	-0.614	-1.026	-0.202	0.003					
Kakar et al.	knees	2009	-1.257	-2.133	-0.381	0.005					
Vong et al.	knees	2010	-0.858	-1.363	-0.353	0.001					
Sa-ngasoongsong et al.	knees	2011	-1.363	-1.991	-0.735	0.000					
			-1.149	-1.298	-1.000	0.000					
							-2.00 -1.00 0.00 1.00 2.00				
							Favours TXA Favours Control				

Results: Blood Loss in THA

study name	Subgroup within study	Year Statistics for each study					Wtd. Diff in	means and 95	5% CI		
			WMD	Lower limit	Upper limit	p-Value					
Ekback et al.	hips	2000	-1.375	-2.064	-0.686	0.000	(
Benoni. et al.	hips	2000	0.212	-0.417	0.842	0.509				-1	
Benoni et al.	hips	2001	-0.686	-1.341	-0.030	0.040			_		
lusted et al.	hips	2003	0.274	-0.348	0.897	0.388				<u> </u>	
Yamasaki et al.	hips	2004	-0.719	-1.359	-0.080	0.027		─┼┲	_		
Lemay et al.	hips	2004	-0.370	-1.003	0.263	0.252					
Garneti et al.	hips	2004	0.139	-0.416	0.694	0.623				-	
Johansson et al.	hips	2005	-0.690	-1.094	-0.285	0.001			-		
Viskanen et al.	hips	2005	-0.702	-1.349	-0.055	0.033		╶╶┼┲	_		
Claeys et al.	hips	2007	-0.886	-1.536	-0.237	0.007					
Kazemi et al.	hips	2010	-0.663	-1.166	-0.159	0.010					
McConnell et al.	hips	2011	-0.620	-1.225	-0.015	0.045			_		
			-0.504	-0.672	-0.336	0.000		◀			
							-2.00	-1.00	0.00	1.00	2.00
							I	Favours TX	(A Fav	ours Cor	ntrol

Results: Transfusions in TKA JOHNS H

RTHOPAEDIC SURGERY

Results: Transfusions in THA JOHNS H

Study name	Subgroup within study	Time point	Stat	tistics fo	r each s	study			Odds ratio	and 959	% Cl	
			Odds ratio	Lower limit	Upper limit	p-Value						
Ekback et al.	hips	2000	1.000	0.058	17.181	1.000				•		- I
Benoni. et al.	hips	2000	0.218	0.053	0.895	0.035		_	_	•		
Benoni et al.	hips	2001	0.429	0.103	1.785	0.244						
Husted et al.	hips	2003	0.206	0.037	1.159	0.073				+		
Lemay et al.	hips	2004	0.033	0.002	0.626	0.023	<hr/>					
Garneti et al.	hips	2004	1.397	0.449	4.350	0.564					-	
Johansson et al.	hips	2005	0.268	0.105	0.681	0.006						
Niskanen et al.	hips	2005	0.536	0.138	2.082	0.368				-		
Claeys et al.	hips	2007	0.123	0.013	1.138	0.065	<u> </u>			+		
Malhotra et al.	hips	2011	0.123	0.035	0.436	0.001						
			0.327	0.208	0.515	0.000			-	•		
							0.01	0.	1	1	10	100
								Favou	rs TXA	Fav	ours Co	ntrol

Figure 6 Forest plot of combined OR values for the number of patients requiring allogeneic transfusions in hip arthroplasty studies.

Results: DVT in TKA

Study name	Subgroup within study	Time point	Sta	atistics f	or each s	tudy		Odds ratio and 95% CI				
			Odds ratio	Lower limit	Upper limit	p-Value						
Hiippala. et al.	knees	1995	0.148	0.006	3.397	0.232	←		— I I			
Benoni et al.	knees	1996	1.368	0.287	6.512	0.694						
Hiippala et al.	knees	1997	0.973	0.130	7.283	0.979			⊢			
Jansen et al.	knees	1999	0.181	0.008	4.017	0.280	<					
Engel et al.	knees	2001	5.952	0.256	138.249	0.266						
Good et al.	knees	2003	0.880	0.114	6.781	0.902			├── │			
Vong et al.	knees	2010	2.345	0.202	27.201	0.496						
			1.030	0.439	2.420	0.946						
							0.01	0.1	1 10 100			
							F	avours TXA	Favours Control			

Results: DVT in THA

Study name	Time point	S	tatistics f	or each st	udy	Odds ratio and 95% CI					
			Odds ratio	Lower limit	Upper limit	p-Value			1		
Ekback et al.	hips	2000	1.000	0.058	17.181	1.000				-+-	
Benoni. et al.	hips	2000	0.941	0.165	5.361	0.946		—		-	
Claeys et al.	hips	2007	8.200	0.396	169.899	0.174					
Kazemi et al.	hips	2010	0.323	0.013	8.232	0.494	—				
Imai et al.	hips	2012	0.905	0.163	5.035	0.909				-	
			1.070	0.393	2.911	0.895			≁		
							0.01	0.1	1	10	100
							F	avours TX	A Fav	ours Co	ntrol

Figure 8 Forest plot of combined OR values for the number of patients who developed a DVT in hip arthroplasty studies.

Tranexamic Acid

• Contraindications?: - Renal insufficiency, decrease dose

- thromboembolic event
 • no evidence in literature for increased rate of future events

Cerebrovascular and cardiac disease
no evidence for increased complication rates

Tranexamic Acid

• Contraindications?:

- Known TXA allergy, anaphylaxis reported

History of VTE and Stents
Use Topical

Drain Use

 Used to decrease swelling, hematoma, and wound issues

 Shown to increase blood loss and transfusion requirement

THE COCHRANE COLLABORATION®

- 2008 meta-analysis of randomized studies
 - No difference in incidence of wound infection, hematoma, dehiscence, or reoperation
 - Blood transfusion more frequent in those who received drains

POST-OPERATIVE

Balance

Transfusion Complications

- Allergic reactions (up to 15%)
- Transfusion-related acute lung injury (0.08% to 15%)
- Transfusion-associated circulatory overload (1% to 11%)
- Graft-versus-host disease (< 1%)

Transfusion Immunomodulation (TRIM)

- TRIM = transient depression of immune system following transfusion
- Recipients exposed to large amount of foreign antigens, leads to modulation of recipients immune system

Studies Show Little Benefit

 Allogeneic transfusions have not shown to improve TJA outcomes:

- Monsef and Boettner, HSS 2014
 - Allogeneic blood assoc. w/ increased LOS after THA
 - No transfusion (3.3 days), autologous (3.5 days), allogeneic (4.0 days), Auto+Allo (4.2 days)
- Newman et al. JBJS 2014
 - Allogeneic transfusion assoc. w/ higher rates of reoperations for suspected infection in TJA (1.7% vs 0.7%)
- Friedman et al. JBJS 2014

PAEDIC SURGERY

- Rates of all infections including lung and wound infection were greater for allogeneic transfusion vs autologous or no transfusion in TKA/THA (9.9% vs 7.9%)
- Frisch et al. J Arthroplasty 2014
 - Greater rate of deep surgical site infections (2.4% vs 0.5%)

Transfusion Rates

 Allogeneic transfusion independent predictor of in-hospital mortality

- (Odds ratio 1.5, 95% Cl 1.4-1.7)

HOPAEDIC SURGERY

(Rasouli et al. Transfusion 2016)

Transfusion Triggers

- Wide range 6 to 12 g/dL
- Restrictive triggers do not compromise patient outcomes
- Clinical evidence does not justify transfusion thresholds of > 8g/dL in the absence of symptoms

(Ponnusamy, JBJS 2014)

FOCUS Trial

The NEW ENGLAND JOURNAL of MEDICINE

Liberal or Restrictive Transfusion in High-Risk Patients after Hip Surgery

Jeffrey L. Carson, M.D., Michael L. Terrin, M.D., M.P.H., Helaine Noveck, M.P.H., David W. Sanders, M.D., Bernard R. Chaitman, M.D., George G. Rhoads, M.D., M.P.H., George Nemo, Ph.D., Karen Dragert, R.N., Lauren Beaupre, P.T., Ph.D., Kevin Hildebrand, M.D., William Macaulay, M.D., Courtland Lewis, M.D., Donald Richard Cook, B.M.Sc., M.D., Gwendolyn Dobbin, C.C.R.P., Khwaja J. Zakriya, M.D., Fred S. Apple, Ph.D., Rebecca A. Horney, B.A., and Jay Magaziner, Ph.D., M.S.Hyg. for the FOCUS Investigators N Engl J Med 2011; 365:2453-2462 | December 29, 2011 | DOI: 10.1056/NEJMoa1012452

- FOCUS (Transfusion Trigger Trial for Functional Outcomes in Cardiovascular Patients Undergoing Surgical Hip Repair)
 - RCT of 2016 patients, age 50 year or older
 - All pts had risk factors for cardiovascular disease
 - All pts had Hgb of <10g/dL after hip fracture surgery

Clinical Guidelines

	Recommendations
NIH Consensus Conference, 42 1988	<70 g/L (acute)
American College of Physicians, ⁴³ 1992	No number
American Society of Anesthesiologists, ⁴⁴ 1996	<60 g/L (acute)
American Society of Anesthesiologists,45 2006	No number
Canadian Medical Association, 26 1997	No number
Canadian Medical Association, 46 1998	No number
College of American Pathologists, 4 1998	60 g/L (acute)
British Committee for Standards in Haematology, 48 2001	No number
British Committee for Standards in Haematology, 49 2012	70 g/L*
Australasian Society of Blood Transfusion,50 2001	70 g/L
Society for Thoracic Surgeons, Society of Cardiovascular Anesthesiology, 51 2007	70 g/L
Society for Thoracic Surgeons, Society of Cardiovascular Anesthesiology, 52 2011	80 g/L*
American College of Critical Care Medicine, Society of Critical Care Medicine, 53 2009	70 g/L
American College of Critical Care Medicine, Society of Critical Care Medicine, 54 2009	70 g/L
Society for the Advancement of Blood Management, 55 2011	80 g/L
National Blood Authority, Australia,13 2012	No number
AABB,56 2012	70-80 g/L or 80 g/L†
Kidney Disease: Improving Global Outcomes, 57 2012	No number
National Cancer Center Network, 58 2012	70 g/L

*For patients with acute blood loss. †For patients with symptoms of end-organ ischaemia.

Table 3: Medical society clinical practice guidelines for red blood cell transfusion

THE COCHRANE COLLABORATION®

- 2015 meta-analysis
- Inclusion: RCT studies from 1946-2014 of different transfusion thresholds for hip fracture surgery
- 6 studies (2722 pts) comparing a liberal (usually Hgb > 10) vs restrictive (symptomatic anemia or Hgb < 8)

Results

Transfusion Rates: 74-100% in liberal group <u>11-45% in restrictive group</u>

No difference (liberal vs restrictive)

- 30 day mortality (RR 0.92, 0.67-1.26)
- 60 day mortality (RR 1.08, 0.80-1.44)

Keys to Avoiding Postoperative Hypovolemia

- Pre-op hydration
- Maintaining intraoperative volume
- Minimizing blood loss
- Adequate hydration

Blood Management Protocol TRANSFUSION

Transfusion. 2016 Jan 8. doi: 10.1111/trf.13468. [Epub ahead of print]

Implementing a blood management protocol during the entire perioperative period allows a reduction in transfusion rate in major orthopedic surgery: a before-after study.

Rineau E¹, Chaudet A¹, Chassier C¹, Bizot P², Lasocki S¹.

- Patients undergoing THA/TKA
- Introduction of blood management protocol
 - restrictive trigger (7g/dL)
 - preop EPO
 - postop IV iron and TXA
- Led to reductions in perioperative transfusions and total number of patients with Hgb of <10g/dL at discharge

"Standardized protocol is key"

(Rineau et al. Transfusion 2016)

Our Approach

First line for hypotension

volume resuscitation with crystalloid or colloid

Do not transfuse above Hgb of 7g/dL

unless patient is symptomatic despite administration of fluids

Patients with CAD kept at a target Hgb of 8g/dL

Summary

- Multimodal approach is key
- Consistent protocols
- Early identification and treatment of pre-op anemia
 - IV iron and Epo stimulate RBC development

Summary

- Tranexamic acid decreases transfusion rate
- Limit drain usage
- Maintain volume status with crystalloid
- Transfusion trigger Hgb <7 g/dL is reasonable

